
Self-induced transparency with transverse variations in resonant media
by the power series approximation method

Bing-Chung Cheng,1,2,* Hong-Yih Tseng,1 and Sien Chi1,3

1Institute of Electro-Optical Engineering, National Chiao-Tung University, Hsinchu, Taiwan 300, Republic of China
2Department of Physics, Fu Jen Catholic University, Hsinchuang, Taiwan 24205, Republic of China

3Department of Electrical Engineering, Yuan Ze University, Chung-Li, Taiwan, Republic of China
sReceived 31 March 2004; published 18 January 2005d

This paper presents the analytic solutions of self-induced transparency with transverse variations in resonant
media by a self-consistent power series approximation method. We solve the Maxwell-Bloch equations by
retaining all integral terms from the inhomogeneous broadening and the second-derivative terms with respect
to distance and time. The lowest-order approximation is presented in detail. We discuss the characteristics of
the distortionless pulses that propagate in an inhomogeneously broadening medium. It is shown that the group
velocity and peak power of the self-induced transparency solitons could be represented in terms of the pulse
width, the angle between phase velocity and group velocity, and the basic material parameters of the resonant
medium. The chirping of the soliton is also discussed.
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I. INTRODUCTION

The self-induced transparencysSITd soliton is a coherent
pulse or pulse train propagating in a resonant two-level me-
dium without loss and distortion if the pulse energy exceeds
a critical value. Several types of these distortionless pulses
were foundf1–4g. Because of the coherent interaction, the
group velocity of a SIT soliton depends on its pulse width
and is slowed down with respect to the light speed in the host
medium. The effect of the reduced group velocity of a SIT
soliton in the inhomogeneously broadening two-level atoms
embedded in a Kerr host medium was also studiedf5g. It was
found that an extra negative dispersion would be induced
because of the reduction of the soliton’s group velocity,
which is not predicted by the theory under the slowly vary-
ing envelope approximation.

Although the research on SIT has been widely investi-
gated, a lot of new results are continually being discovered.
For example, the modification of SIT by using an additional
control laser field could further reduce the group velocity of
the SITf6g. The dynamics of the SIT process are profoundly
modified by the nonlinear optical interaction similar to the
electromagnetically induced transparencysEITd f7g. The
presence of the control field allows SIT occurring under a
much broader range of conditions and dramatically slows
down the SIT soliton. Another interesting transparency is
mixed electromagnetically and self-induced transparency
sMIT d f8g.

Most of these novel studies on the interaction between
light and matter are limited to the homogeneously broaden-
ing resonant medium and assumed under the slowly varying
envelope approximationsSVEAd. For a practical resonant

medium, we should consider all components of the polariza-
tion and population difference contributed from the atoms
with resonant frequencies in the whole range of detuning
from the central transition frequency. This indicates the inte-
gral terms from inhomogeneous broadening should be taken
into account in the Maxwell-Bloch equations. The simplest
method for solving the inhomogeneously broadening case is
the factorization ansatz. Such an ansatz also could be applied
to V-type andL-type inhomogeneously broadening media
f9,10g. However, in general the SVEA was still adopted in
Maxwell’s equations.

In this paper, we present a power series approximation
method to deal with the inhomogeneous broadening case for
obtaining the analytic solutions of distortionless pulses with
transverse variations without using the SVEA.

II. MAXWELL-BLOCH EQUATIONS

From Maxwell’s equations, the wave equation describing
pulse propagation in a resonant medium can be written as

S 1

c2

]2

]t2
−

]2

]y2 −
]2

]z2DEW sy,z,td = −
4p

c2

]2

]t2
PW sy,z,td, s1d

whereEW is the electric field in the medium,PW is the polar-
ization resulting from the two-level atoms, andc is the ve-
locity of light in vacuum. The electric field and the macro-
scopic resonant polarization can be expressed as

EW sy,z,td =
1

2
x̂h«sy,z,tdexpfifsy,z,td + isvt − bzdg + c.c.j,

s2ad

PW sy,z,td =
1

2
x̂hfUsy,z,td + iVsy,z,tdg

3 expfifsy,z,td + isvt − bzdg + c.c.j, s2bd

where «sy,z,td is the envelope function,fsy,z,td is the
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phase function,b is the propagation constant,v is the carrier
frequency near the central transition frequencyv0, Usy,z,td
corresponds to the dispersion induced by the resonant atoms,
and Vsy,z,td corresponds to the absorption caused by the
resonant atoms. Note that in contrast with the previous study,
we consider the transverse variation indicated by]2/]y2 in

Eqs. s1d. For a steady-state propagation, we assume thatEW

and PW depend on the moving-frame coordinatet= t−y/Vy
−z/Vz, whereVz andVy are the group velocities of the pulse
in the ẑ direction and theŷ direction, respectively.

For a two-level medium, the Bloch vectorsu,v ,wd relates
to the macroscopic polarization and population difference as
follows:

sU,V,Wd =E
−`

`

su,v,wdgsDddD.

This equation describes the components of the polarization
and population difference contributed from the atoms with
resonant frequencies in the whole range ofD, whereD de-
notes the transition frequency detuning from central transi-

tion frequency andgsDd is the normalized distribution of
detuning from inhomogeneous broadening. Here the quantity
W=msN1−N2d is the macroscopic population difference mul-
tiplied by the transition matrix elementm between the
ground statesN1d and upper statesN2d of the two-level sys-
tem. After neglecting the atomic relaxation times, we can
express the Bloch equations as

u̇ = − sD − ḟdv, s3ad

v̇ = sD − ḟdu +
m

"
«w, s3bd

ẇ = −
m

"
«v, s3cd

whereḟ represents the chirping of the pulse and the deriva-
tive expressions·d denotes] /]t hereafter. Substituting Eqs.
s2d into Eq. s1d and retaining both the second-derivative
terms and all integral terms from inhomogeneous broadening
in Eq. s1d, we obtain

S 1

Vz
2 +

1

Vy
2 −

1

c2Ds«̈ − ḟ2«d + sk0
2 − b2d« + 2Sk0

c
−

b

Vz
Dḟ« =

4p

c2 NmE fü − usḟ + vd2 − 2v̇sḟ + vd − vf̈ggsDddD, s4ad

S 1

Vz
2 +

1

Vy
2 −

1

c2Dsf̈« + 2ḟ2«̇d − 2Sk0

c
−

b

Vz
D«̇ =

4p

c2 NmE fv̈ − vsḟ + vd2 + 2u̇sḟ + vd + uf̈ggsDddD, s4bd

wherek0=v /c. Using Eqs.s3d, we have

ü = − sD − ḟdv̇ + f̈v = − sD − ḟd2u −
m

"
sD − ḟd«w + f̈v,

s5ad

v̈ = − sD − ḟd2v − f̈u +
m

"
«̇w − Sm

"
D2

«2v. s5bd

Furthermore, by introducing the abbreviations

s1 =
4p

c2 Nm, s2 =
4p

c2 N
m2

"
, s3 =

4p

c2 N
m3

"
,

g1 =
1

Vz
2 +

1

Vy
2 −

1

c2, g2 = k0
2 − b2, g3 = 2Sk0

c
−

b

Vz
D ,

the wave equations now could be rearranged as

g1s«̈ − ḟ2«d + g2« + g3ḟ«

= − s2s2v + ḟd«E wgsDddD − s2«E DwgsDddD

− s1v2E ugsDddD − s12vE DugsDddD

− s1E D2ugsDddD, s6ad

g1sf̈« + 2ḟ«̇d − g3«̇

= s2«̇E wgsDddD − ss3«2 + s1v2d E vgsDddD

− s12vE DvgsDddD − s1E D2vgsDddD. s6bd

Equationss3d and s6d are the Maxwell-Bloch equations for
ultrashort pulses propagating in inhomogeneously broadened
two-level media. The distortionless solution will be obtained
without using the SVEA.
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III. POWER SERIES APPROXIMATION METHOD
AND SOLUTIONS

To realize a self-consistent integration of Eqs.s3d–s6d, we
should adopt a sufficiently general form forws«d. At first, we
assume the form of the difference of population is

w = o
,=0

`

w,8sDdskd«/vd2,,

where the dimensionless ratiokd« /v is chosen as the expan-
sion parameter. The parameterkd is defined as 2m /", where
m is the common dipole matrix element. There is a simple
argument that shows the expansion parameterkd« /v must be
much smaller that unity: the eigenenergies of the atom are of
the order of"v, and the perturbing atom-field interaction

energy ismW ·EW <m«<"kd«. The total Hamiltonian of the

system isHtotal=H0−mW ·EW . Thus one is forced to assume that
kd«!v if the interaction energy is to be significantly weaker
than the unperturbed energyf11g. Moreover,kd and v are
constants and independent of variable« as the medium is
chosen. Thus the expansion is modified as

w = − 1 +o
,=1

`

w,sDd«2,, s7d

where the population difference satisfiesw=−1 when«=0.
Here the coefficients of the expansion,w,sDd;w,8sDd
3skd/vd,, are functions ofD to be determined by self-
consistent requirements. Substituting Eq.s7d into Eq. s3cd,
we have

v = −
"

m
o
,=1

`

2,w,«2,−2«̇. s8d

Substituting Eqs.s7d ands8d into Eq. s6bd and then integrat-
ing Eq. s6bd with multiplying an integral factor«, we can
obtain an equation describing the relation betweenḟ and«,

ḟ =
g3

2g1
+

1

g1
o
,=1

` S s2

2, + 2
+ s3

"

m

2,

2, + 2
Dkw,l«2,

+
1

g1

"

m
s1o

,=2

`

fv2kw,l + 2vkDw,l + kD2w,lg«2,−2, s9d

wherekw,l;e−`
` w,sDdgsDddD and a similar form forkDw,l

and kD2w,l. From Eqs.s3ad, s8d, ands9d we have

u̇ = − sD − ḟdv = FsD − ḟd
"

m
o
,=1

`

2,w,«2,−2G«̇. s10d

According to Eq.s9d, the quantity in the bracket is a poly-
nomial of «. Thus we can straightforwardly assume a func-
tional relation forus«d,

u = o
,=1

`

u,sDd«2,+1, s11d

whereu,sDd are to be determined and related to the coeffi-
cientsw,sDd. Now Eq.s6ad can be written only in terms of«̈

and power series of«. We express this relation by the as-
sumption of

«̈ = o
,=1

`

«,sDd«2,−1, s12d

where«,sDd are coefficients related tow,sDd. Integration of
Eq. s12d yields

«̇2 = o
,=1

`
1

,
«,«2,. s13d

Consequently, the temporal evolution originally described by
Eqs. s6d is reduced to an integration for« as long as we
determine the functional form ofws«d.

From the above argument, we retain the terms up to«4 in
the series ofws«d,

w = − 1 +w1sDd«2 + w2sDd«4. s14d

According to Eqs.s7d–s13d, we obtain

v = −
"

m
2w1sDd«̇ −

"

m
4w2sDd«2«̇, s15ad

ḟ = K«2, s15bd

u =
2"

m
Dw1« −

2

3

"

m
sKw1 − 2Dw2d«3, s15cd

«̇2 =
1

t0
2«2 −

1

s«0t0d2«4, s15dd

where

K =
1

g1
Ss2

4
+

s3"

2m
Dkw1l

+
s1"

g1m
fv2kw2l + 2vkDw2l + kD2w2lg, s16ad

s2 − g3

2g1
= sfv2kw1l + 2vkDw1l + kD2w1lg, s16bd

1

t0
2 =

2s2

g1
v −

g2

g1
− sfv2kDw1l + 2vkD2w1l + kD3w1lg,

s16cd

1

«0
2t0

2 = S g3

2g1
−

s2

2g1
DK −

s

3
fv2kw1l + 2vkDw1l + kD2w1lgK

+
s2

g1
vkw1l +

s2

2g1
kDw1l

+
2

3
sfv2kDw2l + 2vkD2w2l + kD3w2lg, s16dd

ands=ss1/g1ds" /md. Substituting Eqs.s15d into Eq.s3bd and
then neglecting the higher-order terms, we obtain
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w1 =
1

2
Sm

"
D2

t0
2m1, s17ad

w2 =
3

2
Sm

"
D2

t0
4F 1

t0
2«0

2 +
2

3
DK −

1

4
Sm

"
D2Gm2, s17bd

where

m1 =
1

1 + D2t0
2 andm2 =

1

9 + D2t0
2m1.

Clearly Eqs.s14d–s17d provide an implicit set of solution in
terms oft0 for SIT parameters. The soliton solution is deter-
mined by Eqs.s15bd and s15dd,

EW std = x̂«0 sechS t

t0
DexpFiKt0«0

2 tanhS t

t0
DGeisvt−bzd,

s18d

where«0 indicates the peak value andt0 represents the pulse
width. Because in Eqs.s6d we retain all integral terms and
the second-derivative terms with respect to distance and
time, Eqs.s14d–s18d are valid for an ultrashort pulse with
transverse variations in an inhomogeneously broadening
two-level system. Notice that although we solve this problem
without considering the dispersion and nonlinearity of a host
medium, the contribution of the dispersion and nonlinearity
can be added in the coefficients of«2 and «4 in Eq. s15dd.
Therefore, our method could be easily extended for the SIT
in a resonant system embedded in a dispersive and Kerr host
medium.

IV. RESULTS AND DISCUSSION

In this section, we discuss the solutions obtained in both
Lorentzian and Gaussian line shapes. For convenience, we
define

Vy = Vz tana,
1

tc
2 =

Nm2

"
pv,

Ṽ =
c

Vz
, ṽ =

b

k0
,

wherea is the angle between the group velocity and phase
velocity.

Case (i): Lorentzian line shape.
First, the Lorentzian line shape is assumed,

gsDd =
va

2p

1

D2 + sva/2d2 , s19d

where va is the full width at half maximumsFWHMd of
gsDd. From Eqs.s16d, we have

Ṽ2 sec2 a =
b + Îb2 + 4t0

2v2a2 sec2 a

2
, s20ad

ṽ2 =
2a2 sec2 a

b + Îb2 + 4t0
2v2a2 sec2 a

, s20bd

where

b = 1 + 8
t0

2

tc
2 − t0

2v2 − 8
t0

4

tc
2S 1

t0
2 + 2t0/va

D , s21ad

a = 1 −
2

tc
2v2 + 2

t0
2

tc
2S 1

1 + vat0/2
D + 2

t0
2

tc
2v2S 1

t0
2 + 2t0/va

D ,

s21bd

and

«0
2 = S2"

m
D2 v2

sv2t0
2 − 9dsvat0 + 8d

S8 +
3va

v2t0
+ vat0D .

s22d

For the pulses without transverse variations, i.e.,a=0, we
have

Ṽ2 =
1

2 + t0va
F1 +

t0
2

tc
2s8 − v2tc

2d +
1

2
s1 − v2t0

2dt0vaG
+

1

2
s1 + v2t0

2dF1 +S 1

2 + vat0
D2S 8t0

vtc
2D2G1/2

, s23d

and a relationship between the maximum frequency shiftK«0
2

and the group velocity is determined via

t0f3va + t0v2s8 + t0vadgS 1

«0
2D

= Smt0

2"
D2

st0va + 8dst0
2v2 − 9d

+ fvtc
2s2 + t0vads6 + t0vadsṼ2 − 1d − 4t0

3vvagK.

s24d

Case (ii): Gaussian line shape.
Next, the Gaussian line shape is assumed,

gsDd =
1

vb

Î lns2d
p

expF−
lns2dD2

vb
2 G , s25d

where vb is the full width at half maximumsFWHMd of
gsDd. We have

km1l = −
Îlns2dp

vbt0
expF lns2d

vb
2t0

2GHErfFÎlns2d
vbt0

G − 1J , s26d

kD2m1l =
Îlns2dp

t0
3vb

H vbt0

Îlns2dp
+ expF lns2d

vb
2t0

2G
3FErfSÎlns2d

vbt0
D − 1GJ , s27d

km2l =
Îlns2dp
24t0vb

expF lns2d
vb

2t0
2GH3 − expF8 lns2d

vb
2t0

2 G
− 3ErfFÎlns2d

vbt0
G + expF8 lns2d

vb
2t0

2 GErfF3Îlns2d
vbt0

GJ ,

s28d
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kD2m2l = −
Îlns2dp
8vbt0

3 expF lns2d
vb

2t0
2GH1 − 3 expF8 lns2d

vb
2t0

2 G
− ErfFÎlns2d

vbt0
G + 3 expF8 lns2d

vb
2t0

2 GErfF3Îlns2d
vbt0

GJ ,

s29d

kDm1l = kDm2l = 0. s30d

Again, from Eqs.s16d, we have

Ṽ2 sec2 a =
b + Îb2 + 4t0

2v2a2 sec2 a

2
, s31ad

ṽ2 =
2a2 sec2 a

b + Îb2 + 4t0
2v2a2 sec2 a

, s31bd

where

b = 1 + 8
t0

2

tc
2 − t0

2v2 − 8
t0

4

tc
2kD2m1l, s32ad

a = 1 −
2

tc
2v2 + 2

t0
2

tc
2km1l + 2

t0
2

tc
2v2kD2m1l, s32bd

and

«0
2 =

4"2sv2km2l + kD2m2ld
m2st0

2kD2m2l + v2t0
2km2l − km1ld

. s33d

For the pulses without transverse variations, i.e.,a=0, we
have

Ṽ2 =
tc

2 − v2t0
2tc

2 + 8t0
2 − 8kD2m1lt0

4

2tc
2

+ FS tc
2 − v2t0

2tc
2 + 8t0

2 − 8kD2m1lt0
4

2tc
2 D2

+
t0

2sv2tc
2 + 2v2t0

2km1l + 2t0
2kD2m1l − 2d2

v2tc
4 G1/2

,

s34d

and the relationship between the maximum frequency shift
K«0

2 and the group velocity is determined via

6t0
2skD2m2l + v2km2ld

vtc
2 S 1

«0
2D

= SṼ2 − 1 −
8t0

4kD2m2l
tc

2 DK

−
3m2t0

2fkm1l − sv2km2l + kD2m2ldt0
2g

2"2vtc
2 . s35d

To compare the results of casesid and casesii d, we made
two numerical simulations and the results are shown in the
following figures. Figure 1 shows the soliton’s peak value«0
versust0. In addition, Fig. 2 shows the maximum frequency
shift versust0, whereva in the Lorentzian line shape andvb

in the Gaussian line shape are assumed to be 1 THz.
These numerical results show that the parameters of the

soliton solution are approximately the same for both Gauss-
ian and Lorentzian line shapes. Notice that in contrast with
the SIT theory under the SVEA, the coefficient of higher-
order term leads to constraint on the maximum frequency
shift.

Furthermore, ifgsDd is a delta function,dsDd, the inho-
mogeneous broadening becomes homogeneous broadening.
Then m1=1, m2=1/9, and those average values such as
kDm1l, kDm2l, kD2m1l, and kD2m2l are all zeros. These re-
sults lead to

b = 1 + 8
t0

2

tc
2 − t0

2v2, s36ad

a = 1 −
2

tc
2v2 + 2

t0
2

tc
2 , s36bd

«0
2 =

4"2v2

m2sv2t0
2 − 9d

. s37d

For the pulses without transverse variations, i.e.,a=0, we
have

FIG. 1. Soliton peak value«0 vs t0.

FIG. 2. Maximum frequency shift vs soliton’s pulse width,
where the needed parameters areN=1025 m−3, m=1.4310−32 C m,
andVz<c/3.
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Ṽ2 =
tc

2 − v2t0
2tc

2 + 8t0
2

2tc
2 FS tc

2 − v2t0
2tc

2 + 8t0
2

2tc
2 D2

+
t0

2sv2tc
2 + 2v2t0

2 − 2d2

v2tc
4 G1/2

. s38d

The relationship between the maximum frequency shiftK«0
2

and the group velocity is determined via

6t0
2v2

vtc
2 S 1

«0
2D = sṼ2 − 1dK −

3m2t0
2s1 − v2t0

2d
2"2vtc

2 . s39d

To compare our study with previous research, we consider
the pulse with longer duration. For this consideration, we
assumesvt0d2@1 andsvtcd2@1. These approximations re-
sult in

a = 1 + 2
t0

2

tc
2 , s40ad

b = 1 + 8
t0

2

tc
2 − t0

2v2 s40bd

for Eqs. s20d. Considering the pulses without transverse
variations, we have

Ṽ = 1 + 2
t0

2

tc
2 . s41ad

K«0
2 =

3

2

1

t0
2v
S1 −

t0
2

tc
2D , s41bd

where K«0
2 indicates the maximum frequency shift. Obvi-

ously, we havet0=tc andṼ=3 for an unchirped pulse with-
out transverse variationf11g. In comparison, for an un-
chirped pulse with transverse variation, we solve Eqs.s16cd
and s16dd and obtain

1

Vz
sec2 a −

1

c2 =
4

Vz

b

v
−

4

c2 , s42d

which is exactly the condition obtained in Ref.f12g.

V. CONCLUSION

We have found the analytic solutions of the self-induced
transparency with transverse variations in inhomogeneously
broadening media with both Lorentzian and Gaussian line
shapes by the self-consistent power series approximation
method. The Maxwell-Bloch equations can be solved even if
both the integral terms from inhomogeneous broadening and
the second-derivative terms with respect to distance and time
are retained. The chirping, group velocity, and peak power of
the SIT soliton can be represented by the pulse width and
material parameters of the resonant medium. We compare the
numerical results of Lorentzian and Gaussian line shapes and
have found they are approximately the same.
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