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Self-induced transparency with transverse variations in resonant media
by the power series approximation method
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This paper presents the analytic solutions of self-induced transparency with transverse variations in resonant
media by a self-consistent power series approximation method. We solve the Maxwell-Bloch equations by
retaining all integral terms from the inhomogeneous broadening and the second-derivative terms with respect
to distance and time. The lowest-order approximation is presented in detail. We discuss the characteristics of
the distortionless pulses that propagate in an inhomogeneously broadening medium. It is shown that the group
velocity and peak power of the self-induced transparency solitons could be represented in terms of the pulse
width, the angle between phase velocity and group velocity, and the basic material parameters of the resonant
medium. The chirping of the soliton is also discussed.
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I. INTRODUCTION medium, we should consider all components of the polariza-

The self-induced transparen¢$IT) soliton is a coherent \t/i/(i)t?l fggoﬁgﬁglzteloﬂeﬂg; f?ﬁethcguﬁglfée?a;memOtfhze?ltﬁ‘rirr]ls
pulse or pulse train propagating in a resonant two-level me; q g 9

dium without loss and distortion if the pulse energy exceedd©M the central transition frequency. Th|s_ indicates the inte-
gral terms from inhomogeneous broadening should be taken

a critical value. Several types of these distortionless pulseInto account in the Maxwell-Bloch equations. The simplest
were found[1-4]. Because of the coherent interaction, the : . d ) i plest
method for solving the inhomogeneously broadening case is

group velocity of a SIT soliton depends on its pulse Wldth&he factorization ansatz. Such an ansatz also could be applied

and is slowed down with respect to the light spee_d in the hosto \-type andA-type inhomogeneously broadening media
medium. The effect of the reduced group velocity of a SIT 9,10]. However, in general the SVEA was still adopted in
soliton in the inhomogeneously broadening two-level atom éxvx;ell’s equat’ions

embedded in a Kerr host medium was also stuffgdit was . . N
In this paper, we present a power series approximation

found that an extra negative dispersion would be inducec#nethod to deal with the inhomogeneous broadening case for
because of the reduction of the soliton's group velocity, 9 g

which is not predicted by the theory under the slowly vary-?rgzaslcgrgethfaﬁggggf;;Lu(}:injsg d;ﬁ?rélsrgzss pulses with
ing envelope approximation. 9 '

Although the research on SIT has been _vvidely investi- IIl. MAXWELL-BLOCH EQUATIONS

gated, a lot of new results are continually being discovered.

For example, the modification of SIT by using an additional From Maxwell's equations, the wave equation describing
control laser field could further reduce the group velocity ofpulse propagation in a resonant medium can be written as
the SIT[6]. The dynamics of the SIT process are profoundly 12 2 2 4o
modified by the nonlinear optical interaction similar to the ( —)E(y,z,t) = l_ﬁ(y,z,t), (1)
electromagnetically induced transparentgIT) [7]. The et gyt o ¢ it

presence of the control field allows SIT occurring under a - . o ) s
much broader range of conditions and dramatically slowgVhereE is the electric field in the mediun®; is the polar-
down the SIT soliton. Another interesting transparency idZation resulting from the two-level atoms, ands the ve-

mixed electromagnetically and self-induced transparencyPCity of light in vacuum. The electric field and the macro-
(MIT) [8]. scopic resonant polarization can be expressed as

Most of these novel studies on the interaction between 1
light and matter are limited to the homogeneously broaden- E(y,zt) = éx{g(y,z,t)ex;{w(y,z,t) +i(wt - B2)] +c.c},
ing resonant medium and assumed under the slowly varying
envelope approximatiofSVEA). For a practical resonant (2a)

- 1. .
P(y,zt) = -x{[U(y,zt) +iV(y,zt
*Corresponding author. Present address: Department of Physics, .21 2 {lUly.z1) v:20)]
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phys2011@mails.fju.edu.tw where ¢(y,z,t) is the envelope functiong(y,z,t) is the
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phase functiong is the propagation constand,is the carrier  tion frequency andy(A) is the normalized distribution of
frequency near the central transition frequeagy U(y,z,t)  detuning from inhomogeneous broadening. Here the quantity
corresponds to the dispersion induced by the resonant atomé/=u(N;—N,) is the macroscopic population difference mul-
and V(y,z,t) corresponds to the absorption caused by theiplied by the transition matrix element between the
resonant atoms. Note that in contrast with the previous studground stat€N;) and upper statéN,) of the two-level sys-

we consider the transverse variation indicateddbggy® in  tem. After neglecting the atomic relaxation times, we can

Egs. (1). For a steady-state propagation, we assume Ehat express the Bloch equations as

and P depend on the moving-frame coordinatet-y/V, U=—(A- ¢)v (33
-2/V,, whereV, andV, are the group velocities of the pulse '

in the Z direction and they direction, respectively.

For a two-level medium, the Bloch vectar,v,w) relates b=(A-Ppu+Lew, (3b)
to the macroscopic polarization and population difference as
follows:
e} W: - ﬁ(‘.:U, (30)
(U5V!V\I) :f (U!U!W)g(A)dA' ﬁ

where ¢ represents the chirping of the pulse and the deriva-
This equation describes the components of the polarizatiotive expressior(-) denotesd/ dr hereafter. Substituting Egs.
and population difference contributed from the atoms with(2) into Eq. (1) and retaining both the second-derivative
resonant frequencies in the whole rangeAofwhereA de-  terms and all integral terms from inhomogeneous broadening
notes the transition frequency detuning from central transiin Eq. (1), we obtain

& *vig‘ciz)(é‘ Fer+03-e+ 2 0= L )go= 2T [ 10-up 0= 2000+ 00 -viigaras, a2
1 1 1) . . .4 . . o .
(g v %o 2 -2 0 Lo 2nn [ 5- vt w2t o +uigins, @

whereky=w/c. Using Egs.(3), we have yi(8 = §€) + o6 + yacbe

= (A~ ¢)b . <'f>v - (A- <';S)2u ~ %(A ~ (j))sw+ ¢U =-52w+ ¢)e f wg(A)dA - sye f Awg(A)dA

(53 - 5,0° f ug(A)dA - ;2w f Aug(A)dA
. . 2 -s fAzug(A)dA, (63
az—(A—¢)2u—¢u+ﬁ'w—<ﬁ) e2v.  (5h) '
f h
Furthermore, by introducing the abbreviations y(de + 2¢e) = yse
e _ 2 2
. _4_77N _4_77N,U«_2 _4_77N/~'L_3 —szsfwg(A)dA (3¢ +slw)fvg(A)dA
172 e 2T NG ST e N
—51wa Avg(A)dA—slfszg(A)dA. (6b)
1 1 1 2 ky B . _
7= W + W - %=k-=-65 v=2(—-) Equations(3) and (6) are the Maxwell-Bloch equations for
o c V, A
z oy ultrashort pulses propagating in inhomogeneously broadened
two-level media. The distortionless solution will be obtained
the wave equations now could be rearranged as without using the SVEA.
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IIl. POWER SERIES APPROXIMATION METHOD
AND SOLUTIONS

To realize a self-consistent integration of E(B—(6), we
should adopt a sufficiently general form fo(e). At first, we
assume the form of the difference of population is

w= > wi(A)(rgsl ),
€=0
where the dimensionless ratiQe/ @ is chosen as the expan-
sion parameter. The parameteyis defined as 2/%, where

PHYSICAL REVIEW H1, 016609(2005

and power series of. We express this relation by the as-
sumption of

o

8= 2 eA)e¥
€=1

(12

whereg (A) are coefficients related tw,(A). Integration of
Eq. (12) yields

oo
. 1
82 = E _Sesze.

13
27 13

w is the common dipole matrix element. There is a simple

argument that shows the expansion parameief» must be

much smaller that unity: the eigenenergies of the atom are d

the order offiw, and the perturbing atom-field interaction
energy isu-E=ue=fkge. The total Hamiltonian of the

system iSHtotaFHo—,&-é. Thus one is forced to assume that
kqe < o if the interaction energy is to be significantly weaker

than the unperturbed ener$1]. Moreover, ky and w are
constants and independent of variableas the medium is
chosen. Thus the expansion is modified as

oo

w=—1+ > w(A)e,
=1

)

where the population difference satisfies—1 whene=0.
Here the coefficients of the expansiom(A)=w;(A)
X (kgl w)¢, are functions ofA to be determined by self-
consistent requirements. Substituting E@). into Eq. (3¢),
we have

i .
v=——2 20w,e2 % .
Me=1

)

Substituting Eqs(7) and(8) into Eq. (6b) and then integrat-
ing Eq. (6b) with multiplying an integral factor:e,_ we can
obtain an equation describing the relation betweeande,

= ><W€>82€

: Y3 1
= +
¢ 20+ 2

21 Yie=1 (

Lol
S 2042

+ 2RSS Lww) + 20(Aw) + (AW ]2, (9)
Vi =2

where{w,)= [~ w,(A)g(A)dA and a similar form foKAw,)
and(A®w,). From Eqs.(3a), (8), and(9) we have

U=-(A-gp= [(A - ¢)ﬁ > 2ewg826-2] e. (10
M oe=1

According to Eq.(9), the quantity in the bracket is a poly-

nomial of e. Thus we can straightforwardly assume a func-

tional relation foru(e),

u= 2, ug(A)e?,
=1

(11

Consequently, the temporal evolution originally described by
gs. (6) is reduced to an integration far as long as we
determine the functional form afi(e).

From the above argument, we retain the terms ughtin
the series ofnv(e),

w=—1+w;(A)e?+w,y(A)e*. (14)
According to Eqs(7)—(13), we obtain
7 . h ,.
v=- ;ZW]_(A)S - ;4W2(A)8 €, (153
P=Ke?, (15b)
2h .
u= ZAWlS - 5;(le - 2Aw,)e®, (150
1 1
o?= Se% - —et, 15
Sl e (15d
where
1(s, 53ﬁ>
K=—[2+>2C
'Yl( 4 + 20 (wq)
+ 3 2005) + 20(Awy) + (A2 16
71M[w (W) + 2a(AW,) + (AW,)], (16a
522;/3 = wiwy) + 20(Awy) + (Awg)],  (16b)
1
1 2
5= 20- 2 - dufawy) + 200wy + (4%wy),
0 1 1
(160

[ _ = St o 2
- - + 2a(Aw) + (A2Wp) K
8575 (2)/1 2)/1) 3[w (Wy) + 20(Awy) + (A“Wy)]
+ 2 o) + 2 (Awy)

Y1 2y

F 200w + 2000 + (W], (160

whereu,(A) are to be determined and related to the coeffi-ands=(s,/y;)(#/u). Substituting Eqs(15) into Eq.(3b) and

cientsw,(A). Now Eq.(6a) can be written only in terms af

then neglecting the higher-order terms, we obtain
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2 4
w1:}<ﬁ) oMy, (179 b:1+87—é—7§w2—8ﬁ( !

2 2\ 7 2ro/wa>' (213

_3(m)P 4 1,2 1(% 2 A 1 20 1
WZ_Z(ﬁ> 70{7583+3AK aln) ™ G7 a=1_7§w2+27_g<1+waro/2>+27§Z)2<‘r(2)+270/wa>'

(21b

+ waTo) .

(22)

For the pulses without transverse variations, i®=,0, we
have

where
and

5 (2%)2 w? <8+ 3w,
g=\|—
O\ i) (0= 9Y(wamo+ 8\ P

1 1
m=——- andm,=——-m;.
YT 142 279Nt
Clearly Eqgs.(14)—(17) provide an implicit set of solution in
terms ofr, for SIT parameters. The soliton solution is deter-
mined by Eqs(15b) and (150,

E(7) = %o secr( l)exp{ iK 7065 tan?‘<1> } glt=p2)
70 7o
o T [1 +Bo-utds oa ‘wZT(Z))TowJ

whereg, indicates the peak value anglrepresents the pulse 2+ Towa g
width. Because in Eqg6) we retain all integral terms and 1 1 \%8r)\?|Y?

R . ; +-(1+a?P)| 1+ 2% (23)
the second-derivative terms with respect to distance and o\ T W0 2+ w,m) \ w7 :
time, Eqgs.(14)—(18) are valid for an ultrashort pulse with a ¢
transverse variations in an inhomogeneously broadeningnd a relationship between the maximum frequency &lhift

two-level system. Notice that although we solve this problenmand the group velocity is determined via

without considering the dispersion and nonlinearity of a host
medium, the contribution of the dispersion and nonlinearity

can be added in the coefficients ef and £* in Eq. (150).

Therefore, our method could be easily extended for the SIT
in a resonant system embedded in a dispersive and Kerr host

1
7ol 3wy + Tow*(8 + TOwa)]<_2)
€o

MTo z
= (E) (Towa + 8)(75” = 9)

medium.
IV. RESULTS AND DISCUSSION + @722 + 7wg) (6 + Twg) (V2 = 1) — 45ww, K.
In this section, we discuss the solutions obtained in both (24
Lorentzian and Gaussian line shapes. For convenience, wWe Case (ji): Gaussian line shape.
define Next, the Gaussian line shape is assumed,
1 Nu?
V,=V,tana, —=—mw, 1 /In2 In(2)A?
y=Vana 2 & T g(A):—\/—()exp{——()2 } (25)
(07 a wp
;/:3 - = B where wy, is the full width at half maximum(FWHM) of
Vv, ko’ g(A). We have

where « is the angle between the group velocity and phase

velocity.
Case (i): Lorentzian line shape.
First, the Lorentzian line shape is assumed,
W, 1

g(a) = 2082+ (02 (19

where w, is the full width at half maximum(FWHM) of

g(A). From Egs.(16), we have
~ b+ \b? + 4720%a% sed
V2seda= —— zow = (203
2
e 2a?seé a | (20b)
b+ \b? + 475w?a? seé a
where

/— !’/_
(myy = - IAT exp{ '“giHErf{—\'”(z)} - 1}, (26)
WKHTy a)b 0 wWhHTy

<A2ml>:\~|n(2)w{ WpTo +exp{|n(2)}

oy [ VIn@)m wpTh
/_ i
x {Erf(—\ln(z)) ~1]¢, (27)
wWpTo
(= @ exp{ |n(2)] 3o In(Z)]
2 2475wy, wtz) 0 p_ wg 0
(o) (2}
- 3Erf{ _Vln(Z)} + exp{ 8 "2‘(2) } Erf{ $in(2) } } )
WHTH a)b 0 WnTy
(28)
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\“I’](Z)W In(2) 81n(2) €o
Amy) = - ex 1-3exg —5 5
(A"my) By p{ 7_2 wfﬂé 2x10’
n@ 8in2]_ [3Vin@ e G
/In n In 2
- Erf{\—} +3exg — Erf{ ! } , 1.5x10’ 1 Lo?:r?z?:n
WpTo WypTo WpTo 1.25 x10”
(29) 1x107| ¢
7.5x10°
<Am1> = <Am2> =0. (30) 5x10° *
Again, from Eqgs.(16), we have 2.5x10° o 2
& Y 'Y .
- b+ \Vb?+ 4r2w?a? seé 7 5 ¥ -7 &
V2seR o= Al 200) a” (314 2x10 4x10 6x10 8x10 1x10
FIG. 1. Soliton peak valueg vs 7.
Y 2a sel o (31b)
- b+ b2+ 42?2 seCa’ in the Gaussian line shape are assumed to be 1 THz.
These numerical results show that the parameters of the
where soliton solution are approximately the same for both Gauss-
2 A ian and Lorentzian line shapes. Notice that in contrast with
b=1+87 - 3w’ - 8—(A%my), (329  the SIT theory under the SVEA, the coefficient of higher-
Tc Tc order term leads to constraint on the maximum frequency
shift.
~ 2 7 ™ A2 5 Furthermore, ifg(A) is a delta function(A), the inho-
a=1- 2w +2 2<m1>+ 272 2(A"my), (32D mogeneous broadening becomes homogeneous broadening.
¢ o Then my=1, m,=1/9, andthose average values such as
and (Amy), (Amy), (A%m;), and(A’m,) are all zeros. These re-
2 4h2(w2<m2> +<A2m2>) =3 sults lead to
O A((AmY) + wPT(m) — (My) 2z,
_ o _ b=1+8 - 5e?, (363
For the pulses without transverse variations, i®e=0, we Te
have
VL 2 — a7 + 875 — 8(A%my) 75 a:1——2+27—é, (36b)
27 T’ 1
N |:( 7'5 - LL)ZT(Z)TC + 87% - 8(A’my) Tg)z , 45202 -
20272 7227% 7% 172 o 5= 9)
P1e + 20°15(my) + 276(A°my) - 2)°
e G g 3 o(ATmy) = 2) , For the pulses without transverse variations, ie=0, we
W' Te have
(34)

and the relationship between the maximum frequency shift _1§€°2
Kso and the group velocity is determined via s

675((A%my) + wXmy) ( 1 ) 8x10"1°
2 2
wT, & I
¢ oo 0 6x10 *°t
= (VZ -1- M) K ° Gaussian
7-5 4x10°1° -e- Lorentzian
_ 3uPrg[(my) — (@*(my) + <A2m2>)7§]_ (35 2x10"*°}
Zﬁzwrg t
To compare the results of caéé and casdii), we made : ‘WzAxi‘dr‘»" : 4Ax1Aoi“’ A éQio:’ ' 8-x1‘0-'.7 : ixio“to
two numerical simulations and the results are shown in the
following figures. Figure 1 shows the soliton’s peak vadye FIG. 2. Maximum frequency shift vs soliton’s pulse width,

versust,. In addition, Fig. 2 shows the maximum frequency where the needed parameters Brel(?®> m™3, 4=1.4x 1032 C m,
shift versusry, wherew, in the Lorentzian line shape ang, andV,~c/3.
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oo fﬁ—wzr%r%+87é[<7§—w273 C+sfg)2
) 27; 272
N Tg(wz,rg 1_;;27%_ 2)2]1/2. a9

The relationship between the maximum frequency d{m%
and the group velocity is determined via

67‘%{1)2( 1 ) _ ('\72_ K - 3,(/,27%(1 —wzfé)
— —_—.

2 2 2
€5 2h T

(39)

w7,
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Ks§:§i<1—1§), (41b)

where Ke3 indicates the maximum frequency shift. Obvi-

ously, we havery=7, andV=3 for an unchirped pulse with-
out transverse variatiofll]. In comparison, for an un-
chirped pulse with transverse variation, we solve E6c)
and (16d) and obtain

—se@a—?:———— (42

To compare our study with previous research, we considefhich is exactly the condition obtained in REL2].
the pulse with longer duration. For this consideration, we

assumewmy)?>1 and(w7)?> 1. These approximations re-

sult in
a=1+ 27?5, (409
b:1+8§— oW’ (40b)

V. CONCLUSION

We have found the analytic solutions of the self-induced
transparency with transverse variations in inhomogeneously
broadening media with both Lorentzian and Gaussian line
shapes by the self-consistent power series approximation
method. The Maxwell-Bloch equations can be solved even if
both the integral terms from inhomogeneous broadening and
the second-derivative terms with respect to distance and time

for Egs. (20). Considering the pulses without transverseare retained. The chirping, group velocity, and peak power of

variations, we have

\~/=1+27—§. (419

7c

the SIT soliton can be represented by the pulse width and
material parameters of the resonant medium. We compare the
numerical results of Lorentzian and Gaussian line shapes and
have found they are approximately the same.
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